The Crosstalk Between Epigenetic Mechanisms and Alternative RNA Processing Regulation
Review paper 2020
DNA methylation, resulting in 5' methylation of cytosine (5mC), is a conserved and heritable DNA modification that affects gene expression in a genome-wide manner (Li and Zhang, 2014). The impact of DNA methylation on gene expression varies depending on its genomic contexts. The role of promoter DNA methylation in gene expression has been well investigated, which is widely believed to cause transcriptional inhibition of downstream genes (Law and Jacobsen, 2010). Interestingly, recent studies in model plant Arabidopsis revealed that two SU(VAR)3-9 homologs, SUVH1 and SUVH3, bind to methylated DNA and recruit the DNAJ proteins to enhance proximal gene expression, thereby counteracting the repressive effects of transposon insertion near genes (Harris et al., 2018; Xiao et al., 2019; Zhao et al., 2019). Compared to DNA methylation in promoter regions, the function of genic DNA methylation remains elusive (Ball et al., 2009). During the last decade, several studies indicate that genic DNA methylation has a positive effect on the expression of associated genes and prevents spurious transcription initiation, and it is present within a number of cancer-related genes and has been regarded as a hallmark of human cancer (Baylin and Jones, 2011; Yang et al., 2014; Neri et al., 2017).
Recent studies reveal a strong correlation between DNA methylation and alternative splicing. Yang et al. (2014) showed that gene body DNA demethylation mediated by DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine results in reduced efficiencies of transcription elongation or splicing. In human cells, Shukla et al. (2011) reported that a DNA-binding protein, called CCCTC-binding factor (CTCF), can promote inclusion of weak upstream exons by mediating local RNA polymerase II pausing. In this case, DNA methylation inhibits CTCF binding to CD45 exon 5, which enables Pol II to transcribe more rapidly, giving rise to an exon 5 exclusion (Ong and Corces, 2014). More recently, Nanavaty et al. (2020) further revealed that CTCF is a bifunctional regulator which influences both alternative splicing and alternative polyadenylation. Removal of DNA methylation enables CTCF binding and recruitment of the cohesin complex, which in turn form chromatin loops to promote proximal polyadenylation site usage. These works clearly demonstrate that DNA methylation has an important participation in RNA processing regulation. While, limited information is currently available regarding how DNA binding proteins disturb the elongation of Pol II. It reminded us that there maybe are other factors influencing Pol II elongation in CTCF-mediated AS regulation, like the cohesin complex.
Unlike CTCF protein which binds to unmethylated DNA, a growing number of studies have shown that the methyl cytosine-guanine dinucleotide (CpG) binding protein 2 (MeCP2) binds to methylated regions to influence AS. MeCP2 is the earliest reported multifunctional protein that contains both methyl-CpG-binding domains and transcriptional repressor domains (Nan et al., 1997). Acting as a chromatin adaptor, MeCP2 is attracted to 5mC on alternative exons, triggering its interaction with histone deacetylases (HDACs), which modulate alternative splicing (Maunakea et al., 2013). As we delve deeper into the function of MeCP2, it is becoming clear that MeCP2 recruiting splicing factors to regulate mRNA splicing is also a nearly ubiquitous mechanism in animals (Cheng et al., 2017; Wong et al., 2017).
In plants, the available information regarding whether gene body DNA methylation affects AS and the extent of this mediation is currently limited. The first study of DNA methylation-related functions in splicing was reported in maize (Regulski et al., 2013). More recently, the cytosine methyltransferase OsMET1 was found to affect global AS events in rice, in which a total of 6319 more events were identified with the met1 mutant compared with those associated with the wild-type strain (Wang et al., 2016). However, deeper research combining DNA methylation and AS/APA in plant is lacking. Whether it has the similar regulatory mechanism with mammals needs to be further elucidated.
Unlike animals, plants display a high degree of plasticity during growth and development. In plants, to overcome the constant challenge from a rapidly changing environment, specific adaptation mechanisms have been evolved, among which alternative RNA processing is an important strategy (Chaudhary et al., 2019). Recent work has indicated that the role of epigenetic modifications in regulating AS/APA under stress is emerging (Jabre et al., 2019). Temperature is one of the environmental signals that strongly affects plant development. An recent study indicated that temperature variation is memorized by chromatin via H3K36me3 modification, resulting in a specific splicing pattern, which enables a feasible adaptation to stress conditions (Pajoro et al., 2017). Another study showed that genes which are quickly activated under cold stress and differentially expressed at the splicing level, were found to be modified by H3K27me3 in non-stress conditions (Vyse et al., 2020). These reports suggest a dynamic regulation of temperature stress-responsive genes by alternative RNA processing and histone modification. In Arabidopsis, the Nuclear speckle RNA binding proteins (NSRs) have been known as regulators of AS functioning in auxin-associated developmental processes such as lateral root formation (Bazin et al., 2018). These proteins were shown to interact with specific alternatively spliced mRNA targets and at least with one structured lncRNA named ASCO (Bardou et al., 2014). The specific interaction of NSR with the ASCO is able to modulate AS patterns of a subset of NSR target genes, thereby impacting auxin response (Bazin et al., 2018). In other plants, specific association between epigenetic regulators and RNA processing factors under stress conditions has also been found. A maize SWI3D protein, ZmCHB101, has been found to impact alternative splicing contexts of a subset of osmotic stress-responsive genes on genome-wide level (Yu et al., 2019). In turn, alternative RNA processing of pivotal regulatory genes confers plants quick response to the changing climate conditions through alteration of reversible epigenetic marks. While, most of the current researches only focus on one aspect of how plants respond to changeable environment. That means, alternative RNA processing impacts the transcriptome of responsive genes or environment change leads to dynamic alterations of diverse epigenetic modifications (Rataj and Simpson, 2014; Calixto et al., 2018; Li et al., 2018). The mechanistic insights into the detailed interplay between epigenetic regulation and AS/APA in changing environment remains largely limited. In addition, the complicated regulatory mechanisms controlling mRNA isoform ratios in a tissue- or condition-specific manner still remain unclear.
Epigenetic differences in an identical genetic background modulate alternative splicing in A. thaliana
How stable and temperature-dependent variations in DNA methylation and nucleosome occupancy influence alternative splicing (AS) remains poorly understood in plants. To answer this, we generated transcriptome, whole-genome bisulfite, and MNase sequencing data for an epigenetic Recombinant Inbred Line (epiRIL) of A. thaliana at normal and cold temperature. Our transcriptome data revealed that differential DNA methylation and nucleosome occupancy modulate expression levels of many genes and AS in response to cold. Collectively, DNA methylation and nucleosome levels exhibit characteristic patterns around intron-exon boundaries at normal and cold conditions, and any perturbation in them, in an identical genetic background is sufficient to modulate AS in Arabidopsis.
Furthermore, the AS analysis showed that epigenetic differences between Col-0 and epiRIL-368 induced fewer but contrasting changes under similar temperature conditions (22 C and 4 C) (one-way ANOVA p-value = 1.7492e-09 for DAS genes). For instance, the number of identified DAS genes between Col-0 versus epiRIL-368 was 305 and 311 at 22 C and 4 C, respectively (Fig. 1A a,b).
Intrestingly, there is no overlap between DEGs and DAS genes between Col-0 and epiRIL-368 at 22 C (hypergeometric test p-value =0.198) and 4 C (hypergeometric test p-value = 2.520e-05) (Fig. 1B a-b). Whereas, this number significantly increases (Col-0 at 22 C versus epiRIL-368 at 4 C; 7.1%; hypergeometric test p-value 0.011) when epigenetic variations and cold stress adds on together (Fig. 1B c).
Further, we performed gene functional enrichment analysis for DEGs and DAS genes (Supplementary File S1) for all three gene ontology (GO) terms i.e. Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) (Fig. S2). Among DEGs, the most significant (FDR <0.05) terms involved transcription regulation, Pol II processivity, cold and other such as response to abscisic acids, are highly enriched (Fig. S2 A) in different contrasting groups.
Therefore, we reasoned those variations at the methylation and nucleosome (epigenetic) levels may affect AS because of epigenetic differences between Col-0 and epiRIL-368 ecotypes under different temperatures. To further investigate these variations, we performed WGBS for epiRIL-368 plants grown at 22 C and 4 C. We identified high confidence differentially methylated regions (hc_DMRs) (Fisher's exact test, p-value <0.01) in comparison to 54 Columbia (Col) lines of Arabidopsis using the hc_DMR caller pipeline developed by the Jacobsen group at the University of California [60].
The high number of hypomethylated regions suggests relatively lower methylation levels in epiRIL-368 compared to Col ecotype (Fig. 2A). Among all hcDMRs, 22,968 were hypomethylated regions in the epiRIL-368 line as compared to Col lines (Fig. 2A).
We first calculated AS event inclusion levels (PSI) for a total of 43,953 AS events identified in the reference annotation file of Arabidopsis, followed by the differences in their inclusion (PSI) among different contrast groups. Differential AS events analysis suggests that epiRIL-368 display significant (p-value <0.05) differences in 474 and 516 AS events compared to Col-0 at 22 C and 4 C, respectively (Fig. 2C; Supplementary File S4).
Different types of AS events detected in our analysis show an overall similar distribution observed previously in Arabidopsis [9,11] where intron retention (IR) events are the most prevalent, followed by usage of the alternative acceptor (A3'SS) and alternative donor (A5'SS) sites, and exon skipping (ES) (Fig. 2C; Supplementary File S4).
The CpG, CHG, and CHH methylation levels generated using methylpy [65] were plotted around the donor sites (exon-intron; 5'SS), the acceptor sites (intron-exon; 3'SS), and the exons for epiRIL-368 at 22 C and 4 C (Fig. 3A; Fig. S3). We observed a sharp drop in CpG methylation at both splice sites (5'SS and 3'SS; Fig. 3A a-b) suggesting its role in transcription and splicing dynamics by affecting Pol II processing around 5'SS and 3'SS as compared to flanking regions. DNA methylation around exons always shows a higher methylation level and can be differentiated from their flanking regions (introns, especially splice sites) (Fig. 3A; Fig. S3A). Regardless of temperature treatment, we also found the level of methylated CpG dinucleotides (mCpG) is higher in exons as compared to flanking regions including introns and splice sites (Fig. 3A).
Next, we looked at the function of the genes with high confidence differentially methylated regions (hcDMRs), differential nucleosome positioning (DNPs), and differential splice junctions (DSJs) in our dataset. We first identified the genes with hcDMRs, and DNPs in addition to genes with DSJs for the contrasting groups Col-0 at 22 C versus epiRIL-368 at 22 C, and Col-0 at 22 C versus epiRIL-368 at 4 C. We divided genes into three groups including genes with hcDMRs (hcDMR genes), genes with significant DNPs (DNP genes) and genes with significant DSJs (DSJ genes). Finally, significantly overlapping (Fig. 4A) genes between hcDMR, DNP, and DSJ genes for the contrasting groups Col-0 at 22 C versus epiRIL-368 at 22 C, and Col-0 at 22 C versus epiRIL-368 at 4 C were selected for gene ontology (GO) functional enrichment analysis.